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DYNAMIC FINITE ELEMENT AND DYNAMIC PHOTOELASTIC ANALYSES

OF AN IMPACTED PRETENSIONED PLATE

by
A.S. Kobayashi, S. Mall and A.F. Emery

ABSTRACT

- sy
I

Dynamic finite element and dynamic photoelasticity were used to analyze
ESSO type fracture toughness specimen machined from Homalite-100 sheets of

9.5mm thickness. Crack velocities determined from photoelasticity experiments

D ST,

were prescribed in the dynamic finite element analysis for the purpose of
establishing numerically a dynamic fracture toughness which varies with the
crack velocity. Qualitative agreement between dynamic energy release rates
determined by the two procedures were found, provided an appropriate impulse :
was prescribed in the dynamic finite element analysis. The dynamic finite é
element analysis also provided results with sufficient time resolution to

confirm our postulate that Kd = Kc at the onset of crack propagation in Homalite-

100 plates and that Ka varies in these test specimens.
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INTRODUCTION
Two popular test specimens used in studying crack arrest potential of
structure steel are the ESSO and Robertson specimens [1,2]* in which dynamic

crack propagation is initiated through impacting a wedge in the crack of a

subcritically loaded single-edged notch tension plate. Crack arrest in these ex-
periments is attained at regions of either higher fracture toughness generated

by higher local temperature in low carbon steel specimen and/or lower stress
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intensity factors generated by lower local stress fiel i ‘i
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* Denotes references at the end of this paper. !
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Previous dynamic photoelastic analysis of ESSO type test specimens modeled
by Homalite-100 plates [3] showed that the dynamic effects of the propagating
crack combined with that of the impacting projectile have considerable effect
on the dynamic stress intensity factor and hence on crack propagation. Unfor-
tunately, these results neither provided a unique relation between the crack
velocity and dynamic fracture toughness nor an insight into the basic mechanism
of crack arrest. In addition, the results are not in complete agreement with
the more recent experimental results obtained on thicker Homalite-100 plates
[4,5].

In order to verify, by an independent procedure, some of the controversial

results obtained during our past seven-year efforts in fracture dynamics, the

authors have used a relatively simple dynamic finite element code to duplicate
some of their past work in dynamic photoelasticity [6,7,8]. Encouraged by the
reasonable agreements between the numerical and experimental results obtained
through this series of studies involving single-edged notch specimens loaded to
criticality, the same dynamic finite element code was used to analyze the previous

dynamic photoelastic results on the ESSO type test specimens [3].

DYNAMIC PHOTOELASTIC ANALYSIS

The dynamic photoelastic experiments in this paper involve subcritically
loaded single-edged notch tension specimens where crack propagation was initiated
by an impacted flat-nosed projectile or a 65° wedge. The test specimens consisted
of a 9.53mm (3/8 in.) thick Homalite-100 plate with a 0.254 x 0.254m (10 in. x 10
in.) test section loaded in a fixed gripped condition with uniform grip displace-
ment, and with a single-edged starter crack approximately 9.53mm (3/8 in.) in
length. The dynamic properties of Homalite-100 were obtained following the pro-

cedure of Clark and Sanford [9]), which yielded an average dynamic modulus of




of elasticity, Poisson's ratio and stress optic coefficient of 4650 N/mm2

(675 ksi), 0.345 and 27.2 N/mm2 fringe (155 psi-in/fringe), respectively.
The averaged static fracture toughness, which was obtained through separate tests
using SEN specimens, was 20.1 N/mms/2 (579 psivin).

Figure 1 shows 15 frames (1 frame misfired) of dynamic photoelastic patterns
obtained by impacting a subcritically loaded single-edged crack plate with a
flat nose projectile from the bottom. Note that the crack propagated along a curved
path indicating that the crack was driven by the stress waves generated by the
impact on this subcritically loaded plate.

Dynamic stress intensity factors, KD’ were determined by Bradley's two
parameter procedure [10] and the dynamic energy release rate,\gr , was computed
using Freund's equation [11] from the dynamic stress intensity factors. Further

details of these data reduction schemes can be found in References 6 and 8.

DYNAMIC FINITE ELEMENT ANALYSIS

The dynamic finite element code, HONDO [12], used in this investigation is
based on on explicit time integration scheme and constant strain quadrilateral
elements. The crack tip motion was modeled by discontinuous jumps where the crack
tip moved from one finite element node to another at discrete time intervals.
This discrete propagation of the crack tip generated significant oscillations in
the states of stress and displacement surrounding the crack tip. The numerical
noise was filtered by computing directly the dynamic energy released by the discrete
crack tip advancement from the time-averaged normal stress ahead of the advancing
crack tip and the corresponding time-averaged crack opening displacement after
crack advance. Details of this numerical procedure as well as an accuracy check

of the procedure are described in Reference 6.

Figure 2 shows the finite element breakdown involving a total of 532 elements




and 585 nodes used in this analysis. Impacted wedge-loading was simulated

by two simultaneously applied vertical and horizontal forces at the crack mouth
without the wedge-shape and the impact forces for the flat nose projectile and

65° wedge were assumed to vary with impact duration. Large plastic deformations

at the impact sites were assumed to dissipate about 66 percent and 43 percent

of the impact energies for the flat nose and 65° wedge impacts, respectively.
Estimates of these energy losses as well as impact durations were made by com-
paring the calculated dynamic maximum shear stress patterns of a given impulse

with the associated dynamic isochromatic patterns along the plate axis of symmetry
as shown in Figure 3 and the calculated and measured maximum stresses along the
free edge of the specimen as shown in Figure 4. Note that Figures 3 and 4 compare
the calculated and measured results in the vicinity of the impact point only and
thus one could conclude that the agreements are fair in view of the rapid variations
in stresses in this region. As shown in Figure 3, the differences between the
calculated and measured stresses decrease rapidly away from the impact point and
thus better agreement between the two is to be expected in the region removed

from the impact point.

PRETENSIONED SINGLE-EDGED NOTCH PLATE IMPACTED BY FLAT NOSE PROJECTILE

In the series of dynamic photoelastic experiments reported in Reference 3,
the crack propagated in some pretensioned single-edged notch plates while it did
not run in others. These stop-or-go results potentially provided information
for estimating the static fracture toughness under stress-wave loadings but
unfortunately the dynamic photoelastic patterns prior to crack propagation were
not recorded in these experiments. A combination of dynamic finite element
analysis and dynamic photoelasticity results, however, provided a procedure

in which the dynamic state prior to the triggering of the dynamic photoelasticity
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system could be estimated by some trial and error. Figure 5 shows such varia-

tions in dynamic stress intensity factors due to impact for a stationary crack

in Test No. W012172 and prior to crack propagation in Test Nos. W020672 and

] W090771.
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It is interesting to note that in Test No. W012172 in which the crack
remained stationary the calculated dynamic energy release rate,\a%, is barely

; equal to or lower than the critical strain energy release rate,d&c.wlho exceeds

my

,&% within 20 microseconds after impact and is in agreement with the estimated F
time at which the crack started to propagate in the dynamic photoelasticity
experiments. .This combined dynamic photoelasticity-dynamic finite element analysis
indicates that the crack initiation dynamic fracture toughness, Kd’ under this
combined static and stress wave loading is close to, within experimentai scatters,

the static fracture toughness of Kc = 20.1 N/mm3/2 (579 psi/TE). Perhaps such

coincidence may be expected in view of the recent work by G.C. Smith [13] who
found that the variations in fracture toughness of 4.76mm (3/16 in.) thick Homa-
lite-100 plates is approximately equal to the static fracture toughness for the
time interval to failure of 20 microseconds. The 30-50 percent increase in stress
intensity factor due to impulse loading falls within the rapidly changing dynamic

fracture toughness at this time interval to failure.

F—

PRETENSIONED SINGLE-EDGED NOTCH PLATE IMPACTED BY A 65° WEDGE

The dynamic photoelasticity record of Test No. W012472 was analyzed then
by the dynamic finite element method using the idealized crack velocity shown
in Figure 6. Figure 7 shows the variations in computed dynamic energy release

rates due to various impulses used. Figure 8 shows the final impulse used in

analyzing this experiment as well as the computed and measured dynamic energy

release rates and the computed static strain energy release rate without the




impulse. Momentary crack arrest at a/b = 0.39 in the presence of a static strain

energy release rate which exceeds\gg underscores the importance of dynamic analysis

Abbia P

in studying the crack arrest phenomenon under such dynamic loading conditions.

DISCUSSIONS
In this study the importance of a correct impulse shape for computing the

dynamic energy release rate has been underscored by the sensitivity of dynamic

stress intensity factor, K., to the varying state of stress which was governed

D’

by the applied impulse. Unfortunately, the muzzle velocity measurements of the
projectile were unreliable and the subtle variabilities in contact conditions
between the projectile and plate appeared to have significant influence on the
impulse shape. As a result, considerable amount of trial and error was necessary
to arrive at a suitable impulse to match the computed and measured dynamic energy
release rates. Such trial and error defeats the original intent of using dynamic
finite element method as an independent check of our past dynamic photoelasticity
results. Nevertheless, the dynamic finite element analysis served to verify the
following.

Our previous conclusion, which was discussed in Reference 7 involving
simulated dynamic tear tests, that the fracture toughness at crack initiation
did not differ with its static counterpart, appears to be also valid under combined
static and impulse loadings. As mentioned previously, these findings are in
agreement with those in Reference 13 because of the relatively low strain rate
effects involved in these tests.

The dynamic energy release rate at crack arrest was much lower than those
measured in non-impact experiments [7] which again reinforces our postulate that

)‘L at crack arrest is not a material property. The average dynamic energy release

rate, which is obtained by dividing the sum of the total dynamic energy release ‘{

rates by the newly created crack surface by crack propagation, for Test W012472,




yieldedw‘ﬂ}aveﬁlz = 2.33 and 2.28 from the dynamic photoelasticity and dynamic
FEM analysis, respectively. The large\IB]ave generated by elastic analysis

for a prescribed crack propagation history probably indicates the larger dissi-
pation in dynamic energy due to viscous damping and at the flexible edge grips

under high impact loading.
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Figure 1. Dynamic Photoelastic Patterns of a Propagating Crack in a Single-Edged Crack
Pretensioned ?late Impacted by a Flat Nose Projectile. Test No. W090771
Crack missed the 3.8 mm dia. hole located at the center of the plate.
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